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For the purpose of modeling the motion of a solid with a cavity filled
with a viscous fluid, M. A. Lavrent'ev [1] has proposed a modelin the
form of a solid with a spherical cavity in which another solid, spherical
in shape, is enclosed. The sphere is separated from the cavity walls by
a small clearance in which viscous forces act (a lubricating film).

This simple model with a finite number of degrees of freedom possesses
certain mechanical properties of a solid with a cavity containing a
viscous fluid, Study of this model is therefore of interest.

The present paper examines certain properties of the model, which
will be termed a "solid with a damper®. It is shown that for a high-
viscosity lubricant the motion of a solid with a damper can be de~
;scribed by the same equations which pertain to the motion of a sclid
‘with a spherical cavity filled with a high-viscosity fluid. Expressions
relating the parameters of the systems are obtained. If these relations
are fulfilled, the systems become mechanically equivalent,

The steady motions of a free solid with a damper and their stability
conditions are determined.

These motions and stability conditions hold for a body with a cavity
filled with a viscous fluid [2].

§1. Let the solid G with the mass my contain the
spherical cavity D with the radius a. The cavity en-
closes a solid sphere with the mass m and a radius
close to ¢. The mass distribution of the sphere po-
sesses spherical symmetry (it is homogeneous, for
example), The width h of the clearance between the
sphere and the cavity walls is postulated small (h < a},
so that the displacements of the center of the sphere
relative to the center O; of the cavity D canbe neglected
(Fig. 1). We now derive the equations of motion of
the system.

The equation of motion of the center of mass is

{my + m)w = F, where w is the acceleration of the
system's center of mass, and F is the dominant vector
of all external forces acting on the system.

Let O be any point rigidly coupled to the solid (for
example, the system's center of mass, or a fixed
point, -if one exists), We introduce two systems of
Cartesian coordinates: the Oy,y,ys;-system, whose
axes move in arbitrarily prescribed manner (trans-
lational motion, for example), and the Ox;x,x3~system,

Fig. 1

which is rigidly coupled to the solid (Fig. 1). The
moment equation in the Oy, y,y;~system is taken as
dK

dt

=M, K= \ rxvdm,
G+D

where t is time; K is the kinetic moment of the solid
with a damper relative to the point O in the Oy, y,y;~
system; M is the principal moment relative to the
point O of all external forces acting on the solid with
a damper, in the same system of coordinates; r is a
radius vector, read from the point O; v is the velocity
in the Oy,y;ys-coordinate system, dm is a mass
element. The moment M comprises, in particular,
the moment of inertial forces that is governed by the
motion of the Oyy,ys~coordinate system, The velocity
v of any point of the system is v = wxr +u, where w
is the angular velocity of the solid relative to the
Oyy, y», yg-system, and u is the velocity of this point
relative to the Ox x x;-system.

It is obvious that for points of thesolid u = 0, in
which case formula (1, 1) for K becomes

(1.1

K= 'x) rx{(®xyr)dm L
GiD
=J.o L, {L:erudm-
D

(1,2

Here J is the inertia tensor of the entire system
relative to the point O, whose components are constant

in the Oxyxpx3-system. The point denotes the product
of a tensor and a vector. The quantity L, termed a
gyrostatic moment, represents the kinetic moment of
the damper in the Ox,xyx;-coordinate system. It can
readily be seen that this moment does not depend on
the choice of the pole, and is equal to

L=7/Q Q=0,—o0. (1.3)

where I is the moment of inertia of thedamper relative
to its diameter, and w and @ are the angular velo~-
cities of the damper in the Oy,y,y3~ and Ox;x,x;~sys-
tems, respectively.

We assume that the external force acting on the
damper do not create a moment relative to its center.
The moment M; of the forces of interaction between
the damper and the solid relative to the point O, is.
postulated equal to ~kQ, where k is a constant pro-
portionality factor. Then the equation of motion of the
damper with respect to its center becomes

Hdo,/dt =M, = —kQ, &>0. (1.4)

We note that from the quantities appearing in Eq.
(1.4) it is possible to construct the dimensionléss
criterion Ry = I(kT). This criterion is analogous to
the Reynolds number for a solid with a cavity con-
taining a fluid (see below); here, the constant T is
the characteristic time of the process.
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Equations (1.1—1.4) describe the motion of the
solid with a damper in the Oy,y;y;—coordinate system.
Generally, they should be supplemented by the usual
kinematic relations, which we will not write out. We
rewrite Eqgs. (1.1-1.4), denoting by primes the de-
rivative in the Ox;x;x;-coordinate system:

K+oxK=M K=Jo0o+](0—o0),
T +T (@ xey) =k(o—aoy). (1.5)

We calculate k, assuming that the interaction be-
tween the damper and the solid occurs through a
spherical film of an incompressible viscous fluid
with the density p; and the kinematic viscosity v;.
In the Ox;xyx3-coordinate system a point, on the
damper diameter that forms the angle 9 with the vector
Q (Fig. 1), has the velocity £a sin 6. Thisisaccom-
panied by the development in the fluidfilm (with the
thickness h) of the velocity gradient a sin 0 that gives
rise to tangential stress at the damper surface, equal
to pyvifla sin 8/h. We calculate the magnitude of the
moment created by these stresses with respect to the
point Oy, and having compared it with formula (1. 4),
we determine k:

M, =Sﬂlﬂ9:—ﬂzmssinzede = Bwete g,
0
k= (81 3) pvia®ht. (1.6)
§ 2. Let the angular velocities w and w; be on the
order of Tt (where T is the characteristic time of
the process), let their derivative w' and w; in the
Ox, X, Xz-coordinate system on the order of T"? and
let w" and w"; be on the order of T3, Furthermore,
we assume that R, is small (R, «1). Without loss of
generality, we can take T as the unit of time, the
damper radius a as the unit length, and 1/ a as the
unit of mass. Then the moment of inertia I, the an-
gular velocities w and w,, and their first and second
derivatives are values on the order of unity, while
R; = 1/k, where k > 1 (a high-viscosity lubricant) We
rewrite Eq. (1.4), and differentiate both its sides with
respect to time in the Ox (x OX;X ,x 3~ coordinate
Toy ] a8 = 2kQ,
Ie," + lo' x o +Toxe, = —kQ".
According to our estimates, the left-hand sides of
(2.1) are quantities on the order of unity, and there-
fore 1] ~ |Q'l~k™1 «<1. We now substitute w; = w +
+  into the first equation of (2.1) and extress Q with
accuracy to the smallest highest-order infinitesimals

(2.1)

=—Tk e + 0™ *k>1).

Substituting this formula into equality (1.3), we
obtain

L=—DPF'(do/d)+ 0[RS (RLl).

which takes into account that dw/dt = w',

We examine now the motion of a solid with a cavity
completely filled with an incompressible viscous fluid
with the density p and the kinematic viscosity v. Then,
Egs. (1.1) and (1. 2) with all their introduced notation
continué to hold; however, L no longer is defined by
Eq. (1.3).
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Let us assume as before that w', w, w" are on the
order of T-1, Tz, T3, respectively, where T is the
characteristic time of the process. Furthermore, let
the Reynolds number be small (R =121(vT) <1 (! is
the characteristic dimension of the cavity), and let all
the external forces acting on the fluid in the Oy,y,y3-
coordinate system be potential-forces. Then, as shown
in [3], the equality ‘

L=—pvtP(da/dt) + O(R?*
will hold.

Here, P is a constant tensor that depends on the
configuration the cavity and that characterizes energy
dissipation due to viscosity. General expressions for
the components of the tensor P and some of its pro-
perties are given in [3], together with specific for-
mulas for a number of cavity configurations, According
to [8], for a spherical cavity of radiusa we have

(R<1). (2.3)

8na? d
P=PE, P=-—F—-, L:—*—%P%-I-O(Rz),
ll2
R=5<t, (2.4)

where E is a unit tensor.

Formula (2. 4) is completely analogous to (2. 2).
However, equality (2.2) or (2.4), in combination with
Egs. (1.1), as well as with the kinematic relations,
describes completely the motion of a solid in the
Oy, y ;ys-coordinate system.

Hence, for our assumptions, the motion of a solid
/with a damper and that of a solid with a spherical
cavity containing a liquid are described by the same
equations.

To achieve complete mechanical equivalence of the
systems (for the same solid, the same cavity radius
a, and the same external forces and moments F and

'M), it is required that: 1) the mass of the damper be

equal to that of the fluid in the cavity (to ensure equiva-
lence of the equations of motion of the center of
mass), 2) the moments of inertia with respect to the
diameter of the damper and the liquid be alike (to en-
sure equality of the inertia tensor J of the entire
system in Eq. (1.2)), and 3) the coefficients in front
of dw/dt in Egs. (2.2) and (2. 4) be equal. The mass
and the moment of inertia of the lubrication film are
neglected. On this basis, we obtain the following
equalities

4 8 vi? 56
m = Tnpai I = Enpzﬁ, k= 5 =3 npa® - (2.5)

‘which (for our assumptions) are necessary and sufficient
for equivalence of the systems.

With formula (1.6) the last equality in (2.5) can be
transformed into

owvi{a/h) = Tov,
This formula, just like (1.6), is valid for h < q.
We note that when the equalities in (2. 5) are ful-

filled we have the following relation between the Rey-
nolds numbers

R = 35R,, B, = I/ (kT), R = a® | (vT).



If, in modeling, we drop the condition that the
solids identical, a solid with a damper at R < 1
can model a solid with a vigscous fluid at R « 1 for
those cavity configurations for which the tensor P has
the form P =PE, where p is a scalar (e.g., for a
sphere, a cube, etc.), If, on the other hand, a solid
with a cavity filled with a viscous fluid at R «1 a
viscous fluid performs a plane motion. such as rotating
about the fixed x5 axis then for any cavity configuration
it can be modeled by a solid with a damper, in which
case the damper can be any axisymmetric solid with
an axis of symmetry parallel to x;.

Lastly, a solid with a cavity of arbitrary con-
figuration (with any tensor P) filled with a viscous
fluids at R <« 1 canbe modeled by means of a solid con-
taining three or more axisymmetric dampers (flywheels
with viscousdamping). Letthe solid containg three fly-
wheels whose axes are mutually perpendicular and
parallel to the major axes of the tensor P.Then it is easy to
show thatfor the solid with the fluid (at R < 1 to be
equivalent to the solid with the flywheels, it is

“sufficient (for like external forces and moments, as
well as for the same masses and inertia tensors in
both systems) that conditions be fulfilled analogous
to (2.5), namely, py 1Pjj = I*j/k;j for j = 1,2, 3. Here,
Pjj are the principal values of the tensor P; Ij is the
moment of inertia of the j-th flywheel, with respect to
its axis kj is the damping factor of the j-th flywheel,
i. e., the proportionality factor between the moment
of the forces of interaction of the flywheel with the
solid and its angular velocity with the respect to the
solid.

In [3] it was shown that a R < 1, Egs. (1.1), (1.2,
and (2. 3) can be simplified, In the same paper, cer-
tain motions of a solid with a cavity filled with a vis-

. cous fluid were studied in the case of R < 1,
These considerations are fully applicable to a solid
with a damper at R; < 1. From the results of [3],
in particular, it follows that rotation about the axis of
the maximum moment of inertia of the entire system
is the only stable steady rotation of a free solid with
a damper at B; < 1,

§ 3. Let us examine the motion of a free solid with
a damper, without limiting ourselves to the condition
Ry < 1. Postulating M = 0 in Egs. (1.5), and sub- k
tracting the third equation from the first, we obtain

Jo-0' -0 x(J-0) =k(0; —o),

Io) +Jo xoy=Fk(0—0,), (J=1I—IE), (3.1)

Here, J; is the inertia tensor of the system with
respect to the point O, provided the entire mass of
the damper is concentrated at its center. Equations
(3. 1) form a closed system. They can describe the
motion of a free solid about a fixed point (if Oisa
fixed point) or about the center of mass, if O is the
center of mass of the system, and the Oy, y,ys-
coordinate system moves translationally.

Let us couple the Ox xyx;~coordinate system to the
major axes of the inertia tensor J of the system with
respect to the point O. These axes obviously will also
be the major axes fo the tensor J;. Let p, q, and r
denote the projections of the vector w onto the xyx,

and x; axes respectively, let p;,q;, and ry denote the
projections of the vector wy onto the same axes, let
A, B, and C denote the principal moments of inertia
of the entire system with respect to these axes, and
let Ay, By, and C; denote the principal values of the
tensor J; in the same axes (values equal fo A~ I, B —
~1I, and C — I, respectively). In the scalar notation,
Eqs. (3.1) will take the form

Agp" + (Co — Bo) gr = k (p1 — 2,
I(p's+ g —rg) =k{p—p)
By + Ay —Co)rp =k{q — g
I+ oy —pr) =k(g—q).
Co' + By — Ao pg =k (r, — 1),

I+ pg— g =k {r—r).

Let us determine the possible steady motions of
the solid. I w is a constant w' = 0), from the first
equation in (3. 1) it follows that w, is also a constant,
and w'; = 0. Then, by scalar multiplication of both
sides of the second equation in (3.1) by w; - w, we
obtain w; - w. From Eqgs. (3. 2) it can be seen that
such motion is possible only for the case in which
rotation occurs about one of the system's major axes
of inertia. Thus, the only possible steady motions
of both the system and the solid with a viscous fluid
are uniform rotations of the system as a solid entity
about one of the major axes of inerita.

We shall examine the stability of these motions.
Let the uperturbed motion (rotation of the system
about the xj-~axis at the constant angular velocity wy)
be described by the equalities

(3.2)

P = p; = W, q:ql:r:rl::()
(g 5= 0). (3.3)

We set p=w; + x and p; = w; + y in the perturbed
motion, and linearize, Eq. (3.2) about the solution of

(3.3
A’ =k(y — 2, Iy = k(z—y),
By + (Ag — Co) ogr =k (g — 9),
Cor' + (By — Ag) 0gg = k (ry — 1),
1gy + 1oy (r —r) = kg — qu),

Iy 4 Tog (g — @) = k (n — 1. (3.9

The first two equation in {3.4) are independent of
the remaining four equations, so that the characteristic
equation of system (3.4) breaks down into two equa-
tions. After expansion of the determinants, the
characteristic equations reduce to the form

AN + E (Ag + DA = 0,
ah* + a;0* 4 aA? + ah + ay = 0,
@y = BoCol?, ay = Ik (2B,Cy -+ Byl -+ C,0)
a, = oy [(4y — By) (4o — Cy) +
+ BoCol + £ (By + D) (Co + 1),
ag = ok [2 (4 — By) (4, — Cy) +
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+ 1 (4o — Bo) + I (4 — Cy)l,

a, = o (IPo,® + #) (A4g — By) (4, — Cy) (3.5)

The meaning of the zero root of the first equation
jin (3:5) is that an initial disturbance of the kinetic
moment of the entire system is retained constant, Be-
cause of the presence of the zero root, analysis of the
linerarized system (3.4) yields necessary but not suf-
ficient conditions for stability of motion (3.3). For the
motion to be stable, the real parts of all the roots A
of Egs. (3.5) must be nonpositive;: Re A < 0. For the
roots of the first equation in (3.5) this condition is
fulfilled when k = 0. For it also to hold for the second
equation, the Lienard-Chipard conditions [4] must be
fulfilled: Here equality signs are permissible, since
we require the inequality Re A = 0 and not Re A > 0,
as is usually the case.

Inasmuch asa, >0, the Lienard-Chipard conditions
for the second equation in (3, 5) will have the form [4]

al>01 a2>07 a4>01

8,05 > agay" + a,%a,. (3.6)

With use of (3.5), the last inequality in (3. 6) can be
reduced after cumbersome but elementary algebraic
transformations to the form

2120)02 (Ao - Bo - 00)2 [Bo (Ao - o) +
Co(dy — Bo)l +
-+ B (2B,Cy + Bol + Col) [(Ay — By) (B, + I) +

(Ao — Cy) (Co + 1) 120 (3.7

From condition a, > 0, it follows that one must have
"either Ag = By = and Ay = Cy or Ag = By and Ay = Cg.
However, we readily see that in the first case condition
(3.7) no longer holds, while in the second case none
of the conditions (3. 6) and (3. 7) are fulfilled for k = 0.
The inequalitities k = 0, Ay= By, and Ay, = Cy are
precisely the necessary stability conditions for
motion (3. 3). '

\Concerning the sufficient conditions, it can be
said that system (3. 2) has the first integral

K = (T + Jog)* = (Aup + Ip + (Bog + I +

+ (Cor + Im)? = const, ‘(3_ 8)

which expresses conservation of the kinetic moment of
the entire system. We can readily see that by virtue of
Eqs. (3.2) the kinetic energy E, defined by the equality

2E = Agp* + Bog® + Cor® + 1 (P + ¢ + ). (3.9)

does not increase during motion—i.e., E' = 0 when
k = 0. Using the idea of Chetaev's method, we con-
struct the Lyapunov function

V=2 + DE —K* 4+ [K* — (4, + I 0l (3.10

It is not difficult to see that the function V vanishes
for unperturbed motion (3. 38). For perturbed motion,
as above, we substitute p = w; +x and p; = wy +y in-
to Eqs. (3.8) and (3.9), and then write V in (3, 10) as
a function of the variables x,y,4q,q v, and r;. With
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this, the linear terms cancel each other out, and
after collecting like terms, we obtain

V=4 (z — §)* + 4o (4o + I)? (Ao + IyP) +
+ [B, (4y+1—B) ¢ — 2Byl qq, -+ Al g1 +
+ [Co (g + T —Coy 1* — 2C Irr, + Adr?l + ... (3.11)

The points denote terms of the third and higher
orders of smallness. The first square brackets in
(3.11) are a positive definite (for w; = 0) quadratic
form from x and y. For the other two quadratic forms
in (3. 11) to be positive definite, it is enough to re-
quire that

Ao (Ao + 1 —Bo) >Byl, Ag(Ag+1—Cp)>Cpl -

Removing the parentheses and canceling by the
factor A, + I, these inequalities can be reduced to the
form A; > By and A > Cy. For these conditions the
function V will be positive definite. Because (K?' =0,
while E' = 0, the derivative of function (3.10) is non-
positive by virtue of the equations of motion: V' = 0
for k = 0. According to Lyapunov's theorem, motion
will be stable for the above conditions w, = 0,k = 0,
Ay >Cy. We note that the inequalities Ay > By and
A, >C, are equilvalent to the inequalities A = B and
A >C for the principal moments of inertia of the en~
tire system.

Thus, for the steady rotation of a free solid with
a damper about x;-axis (motion (3. 3)) to be stable
at wy =0 and k =0, the conditions A = B, A = C must
be fulfilled, and it is sufficient for the rigorous in-
equalities A > B and A >C to occur, In other words,
stable steady rotation of a free solid with a damper is
possible only about the axis of the maximum principal
moment of inertia, We note that in the general case
the same sufficient stability condition [2) (A > B, A >
> C) occur for the steady rotations of a free solid
with a cavity filled with liquid, while for a high
viscosity fluid [3] the necessary stability conditions
(A = Band A = C) are required in addition to the
sufficient conditions.
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