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For the purpose o f  m o d e l i n g  the  m o t i o n  o f  a sol id  with a c a v i t y  f i l led  

with a viscous fluid, M. A. Lavrent'ev [lJ has proposed a model in the 
form of a solid with a spherical cavity in which another solid, spherical 
in shape, is enclosed. The sphere is separated from the cavity walls by 
a small clearance in which viscous forces act (a lubricating fitm). 
This simple model with a finite number of degrees of freedom possesses 
certain mechanical properties of a solid with a cavity containing a 
viscous fluid. Study of this model is therefore of interest. 

The present paper examines certain properties of the model, which 
will be termed a "solid with a damper'. It is shown that for a high- 
viscosity lubricant the motion of a solid with a damper can be de- 

Acribed by the same equations which pertain to the motion of a solid 
with a spherical cavity filled with a high-viscosity fluid. Expressions 
relating the parameters of the systems are obtained. If these relations 
are fulfilled, the systems become mechanically equivalent. 

The steady motions of a free solid with a damper and their stability 
conditions are determined. 
These motions and stability conditions hold for a body with a cavity 
filled With a viscous fluid [2]. 

w Let  the sol id G with the m a s s  m 0 conta in  the 
s p h e r i c a l  cav i ty  D with the r ad ius  a. The cavi ty  en-  
c l o s e s  a sol id sphere  with the m a s s  m and a r ad ius  
c lo se  to a. The m a s s  d i s t r ibu t ion  of the s p h e r e  po -  
s e s s e s  s p h e r i c a l  s y m m e t r y  (it  is homogeneous ,  fo r  
example) .  The width h of the c l e a r a n c e  be tween  the 
s p h e r e  and the cav i ty  wai l s  is pos tu la ted  sma l l  (h << a), 

so that  the d i s p l a c e m e n t s  of the cen t e r  of the sphe re  
r e l a t i v e  to the c e n t e r  O1 of the cav i ty  D can be neg lec ted  
(Fig.  1). We now d e r i v e  the equat ions  of mot ion  of 
the sys t em.  

The equat ion of mot ion  of the c e n t e r  of m a s s  is 

( m 0  + m ) w  = F,  whe re  w is the a c c e l e r a t i o n  of the  
s y s t e m ' s  cen t e r  of mass ,  and F is the dominant  vec to r  
of all  ex te rna l  f o r c e s  act ing on the sy s t em.  

Let  O be arty point r i g id ly  coupled to the  sol id  (for 
example ,  the s y s t e m ' s  c e n t e r  of m a s s ,  or  a f ixed 
point,  i f  one ex is t s ) .  We in t roduce  two s y s t e m s  of 
/Car tes ian  coord ina te s :  the Oyly2y3-sys tem,  whose  

axes  move  in a r b i t r a r i l y  p r e s c r i b e d  m a n n e r  ( t r a n s -  
la t ional  mot ion ,  fo r  example) ,  and the Oxlx2x~-system , 

~v z 

Fig .  1 

which is r ig id ly  coupled to the sol id  (Fig.  1). The 

momen t  equat ion in the Oyly~yaysystem is taken as 

dK 
-~-~-=M, K =  I r •  (1.1) 

G)~D 
whe re  t is t ime ;  K is the kinet ic  moment  of the solid 
with a d a m p e r  r e l a t i v e  to the point O in the Oyly2y 3- 

sys t em;  M is the p r inc ipa l  m o m e n t  r e l a t i v e  to the 
point  O of all  ex t e rna l  f o r c e s  act ing on the solid with 
a d a m p e r ,  in the s a m e  s y s t e m  of coord ina te s ;  r is a 
rad ius  vec to r ,  r ead  f r o m  the point O; v is the ve loc i ty  

in the Oyly2y3-coordinate  sys tem,  dm is a m a s s  
e lement .  The m o m e n t  M c o m p r i s e s ,  in p a r t i c u l a r ,  

the moment  of i ne r t i a l  f o r c e s  that  is governed  by the 

mot ion of the Oyly2ya-coordinate  sys t em.  The ve loc i ty  
v of any point of the s y s t e m  is v = wxr + u, whe re  w 
is the angt/ lar  ve loc i t y  of the sol id r e l a t i v e  to the 

Oyby2, Y3-system,  and u is the ve loc i ty  of th is  point 
r e l a t i v e  to the Ox~x2x3-system. 

It is  obvious that  fo r  points  of theso l id  u = 0, in 
which c a s e  f o r m u l a  (1.1) for  K b e c o m e s  

K =  ii r •  
G+D 

= J-oJ-{- L, [ L = ~  r •  
(1.2) 

D 

H e r e  J is the i ne r t i a  t e n s o r  of the en t i r e  s y s t e m  
r e l a t i v e  to the point O, whose  components  a r e  constant  

in the Oxlx2x3-system. The point denotes  the product  
of a t ensor  and a v e c t o r .  The quanti ty L, t e r m e d  a 
gy ros t a t i c  m om en t ,  r e p r e s e n t s  the kinetic: momen t  of 

the damper  in the OxLx2x3-eoordinate s y s t e m ,  it can 
r ead i l y  be seen  that this momen t  does not depend on 
the choice  of the pole ,  and is equal  to 

L : If~, f~ = r ~). (1.3) 

whe re  I is  the momen t  of i ne r t i a  of the d a m p e r  r e l a t i v e  
to i ts  d i a m e t e r ,  and w and ~ a r e  the angular  v e l o -  

c i t i e s  of the d a m p e r  in the Oyly2y 3- and Oxlx2xa-sys-  
terns ,  r e s p e c t i v e l y .  

We a s s u m e  that the ex te rna l  f o r ce  act ing on the 
damper  do not c r e a t e  a m o m e n t  r e l a t i v e  tc i t s  c en t e r .  
The m o m e n t  M 1 of the f o r c e s  of in t e rac t ion  between 
the damper  and the sol id  r e l a t i v e  to the point O~ i s  
postula ted equal  to -k[2,  whe re  k is  a constant  p r o -  
por t iona l i ty  f ac to r .  Then the equat ion of mot ion of the 
damper  with r e s p e c t  to i ts  c e n t e r  becom es  

Ido~l/  dt  = Ml  = - - k ~ 2 ,  k > o .  (1.4} 

We note that from the quantities appearing in Eq. 

(1.4) it is possible to construct the dimensionless 

criterion Ri = I(kT). This criterion is analogous to 

the Reynolds number for a solid with a cavity con- 

taining a fluid (see below); here, the constant T is 
the characteristic time of the process. 
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Equat ions  (1.1-1.4)  desc r ibe  the mot ion of the 
sol id with a damper  in the OyiY2y3-eoordinate sy s t e m.  
Genera l ly ,  they should be supplemented  by the usual  
k inemat i c  r e l a t i ons ,  which we will not wr i te  out. We 
r ewr i t e  Eqs.  (1 .1-1 .4) ,  denoting by p r i m e s  the de-  
r iva t ive  in the Oxlx2x3-coordinate sys t em:  

K'@o) • K = M ,  K = J.o) + I (a)l--o)), 

Ir + I (o) • o)i) = k (r - -  o) l ) .  ( 1 . 5 )  

We calcula te  k, a s suming  that the in te rac t ion  be -  
tween the damper  and the solid occurs  through a 
sphe r i ca l  f i lm of an i n c o m p r e s s i b l e  v i scous  fluid 
with the dens i ty  Pi and the k inema t i c  v i s cos i t y  u l. 
In the Oxlx2xa-coordinate s y s t e m  a point,  on the 
damper  d i ame te r  that forms  the angle 0 with the vec tor  

(Fig. 1), has the ve loc i ty  ~ a  s in 0. This  is a c c o m -  
panied by the development  in the f lu idf i lm (with the 
thiekfiess h) of the veloci ty  g rad ien t  ~2a sin 0 that gives 
r i s e  to tangent ia l  s t r e s s  at the damper  su r face ,  equal  
to plvl~2a s in  0/h.  We calcula te  the magni tude  of the 
m o m e n t  c rea ted  by these  s t r e s s e s  with r e spec t  to the 

point  O1, and having compared  it  with f o rmu la  (1.4), 
we de t e rmine  k: 

M1 = i 9ivJQ a sin 0 2~  a s sin 20 dO = 8~plVla a 
h ~ - - '  

.0 

k = (8n / 3) pl~la4h -1 . (1.6) 

2. Let the angular  ve loc i t i e s  w and w 1 be on the 
o rder  of T- i  (where T is  the c h a r a c t e r i s t i c  t ime  of 
the process ) ,  let  the i r  de r iva t ive  w' and w 1 in the 
Oxi x 2 xa-coordina te  sy s t em on the o rde r  of T -2, and 
le t  w" and co" 1 be on the o rde r  of T -z, F u r t h e r m o r e ,  
we a s s u m e  that  Rl is sma l l  (Rl <<1). Without loss  of 
genera l i ty ,  we can take T as the uni t  of t ime,  the 
damper  r ad ius  a as the uni t  length,  and I / a  as the 
un i t  of m a s s .  Then the m o m e n t  of i n e r t i a  I, the an -  
gu la r  ve loc i t i es  w and w l, and the i r  f i r s t  and second 
de r iva t i ve s  a re  va lues  on the o rde r  of unity,  while  
Rt = l / k ,  where  k >> 1 (a h igh -v i scos i ty  lubr icant )  We 
r ewr i t e  Eq. (1.4), and d i f ferent ia te  both i ts  s ides  with 
r e s p e c t  to t ime  in  the Ox ix Oxlx  2 x a- coordinate  

Io)1' +,./o) xa~i = ~ d r  

loi,, + io), xo)i +io)xo)i, =__k~," (2.1) 

According to our estimates, the left-hand sides of 
(2.1) are quantities on the order of unity, and there- 
fore 1~2 I ~ I~'  I ~ k-1 << 1. We now subst i tu te  ~ol = w + 
+ ~2 into the f i r s t  equat ion of (2.1)  and e x t r e s s  ~2 with 
accuracy  to the s m a l l e s t  h i g h e s t - o r d e r  i n f i n i t e s ima l s  

g2 = - - I k - ~ o ) '  + O ( k  -~) (k>~.i). 

Subst i tut ing this  f o r m u l a  into equal i ty  (1.3),  we 
obtain 

L = --  I n k -~ (do) / dt) -~ 0 (R~ ~) ( R ~ I )  

which takes into account  that dw/dt  = w'. 
We examine  now the mot ion  of a solid with a cavity 

comple te ly  f i l led  with an i n c o m p r e s s i b l e  v i scous  f luid 
with the dens i ty  p and the k inemat ic  v i scos i ty  u. Then, 
Eqs.  (1.1)  and (1 .2)  with all  the i r  in t roduced  notat ion 
cont inue to hold; however ,  L no longer  is  defined by 
Eq. (1.3).  

Let us a s sume  as before  that w', w, w" a re  on the 
o rder  of T- l ,  T-z,  T-Z, respec t ive ly ,  where  T is  the 

c h a r a c t e r i s t i c  t ime  of the p rocess .  F u r t h e r m o r e ,  let  
the Reynolds n u m b e r  be sma l l  (R = 1 2 I(vT) << 1 ( I is 
the c h a r a c t e r i s t i c  d imens ion  of the cavity), and let al l  
the ex te rna l  fo rces  acting on the fluid in the Oyjy2y3- 
coordina te  sy s t em be po ten t i a l ' fo rces .  Then, as shown 
in [3], the equal i ty  

L = - - P v - l P ( d ~ ) / d t )  + O ( R  ~) ( R ~ l ) .  (2.3) 

wilt  hold. 
Here ,  P is a constant  t enso r  that depends on the 

conf igura t ion  the cavity and that c h a r a c t e r i z e s  energy 
d i s s ipa t ion  due to v iscos i ty .  General  exp res s ions  for 
the components  of the t enso r  P and some of i ts  p r o -  
pe r t i e s  a re  given in [3], together  with specif ic  fo r -  
mu las  for a number  of cavity conf igura t ions .  According 
to [3], for a spher ica l  cavi ty  of r a d i u s a  we have 

8ha ~ p pdm P = P E ,  P = - - ~ ,  L = - - ~ -  ~ - + O ( R 2 ) ,  

a 2 

R = u  (2.4) 

where  E is a uni t  t e n so r .  
F o r m u l a  (2.4) is comple te ly  analogous to (2.2). 

However, equal i ty  (2.2) or  (2.4), in combina t ion  with 
Eqs. (1.1), as well  as with the k inemat ic  re la t ions ,  
d e s c r i b e s  comple te ly  the mot ion of a solid in the 

Oy 1 y 2y3-coordinate sys tem.  
Hence,  for  our  a s sumpt ions ,  the mot ion  of a solid 

~with a damper  and that of a solid with a spher ica l  
cavity containing a l iquid a re  descr ibed  by the s ame  
equat ions.  

To achieve complete  mechan ica l  equivalence  of the 
s y s t e m s  (for the same  solid,  the same  cavity r ad ius  
a, and the same  ex te rna l  forces  and momen t s  F and 
M), it is r equ i r ed  that: 1) the m a s s  of t h e d a m p e r  be 
equal to that of the fluid in the cavity (to e n s u r e  equiva-  
lence of the equat ions  of mot ion of the cen te r  of 
mass) ,  2) the momen t s  of ine r t i a  with r e spe c t  to the 
d i a m e t e r  of the d a m p e r  and the l iquid  be al ike (to en-  
su re  equal i ty  of the i ne r t i a  t enso r  J of the en t i r e  
sys t em in Eq. (1.2)), and 3) the coeff ic ients  in f ron t  
of d w / d t  in Eqs. (2.2) and (2.4) be equal. The m a s s  
and the m o m e n t  of i ne r t i a  of the lubr ica t ion  f i lm a re  
neglected.  On this bas i s ,  we obtain the following 
equal i t ies  

4 8 ~I  2 56 m=-=g-~pa 3, I = - ~ n p a  ~, k = - - =  ~9 a~. pp ~ -  (2.5) 

w h i c h  (for our as sumpt ions)  a re  n e c e s s a r y  and suff icient  
for equivalence  of the sy s t ems .  

With fo rmula  (1.6) the las t  equal i ty  in (2.5) can be 
t r a n s f o r m e d  into 

91vi(a / h) = 79v, 

This  fo rmu la ,  jus t  l ike (1.6),  is valid for h << a. 
We note that when the equal i t ies  in (2.5) a re  fu l -  
f i l led we have the following r e l a t ion  between the Rey-  
nolds n u m b e r s  

R = 35R1,  R i  = I / (kT), R = a 2 / (vT). 
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If, in model ing,  we drop the condit ion that the 
sol ids ident ical ,  a solid with a damper  at R << 1 
can model  a solid with a viscous fluid at R << 1 for 
those cavi ty  conf igura t ions  for which the t e n s o r  P has 
the fo rm P = PE,  where  p is a s ca l a r  (e. g . ,  for a 
sphere ,  a cube,  e t c . ) .  If, on the other hand,  a solid 
with a cavi ty  f i l led with a v iscous  fluid at R << 1 a 
v iscous  fluid p e r f o r m s  a plane motion,  such as ro ta t ing  
about the fixed x~ axis  then for any cavity conf igura t ion  
it can be modeled by a solid with a damper ,  in which 
case  the damper  can be any a x i s y m m e t r i c  solid with 
an axis  of s y m m e t r y  pa ra l l e l  to x~. 

Last ly,  a solid with a cavity of a r b i t r a r y  con-  
f i gu ra t ion  (with any t enso r  P) f i l led with a v i scous  
f lu ids  at R << 1 can be modeled  by means  of a solid con-  
t aming  three  or  m o r e  a x i s y m m e t r i c  d a m p e r s  (f lywheels 
w i thv i scous  damping).  Let  the solid containg three  f ly-  
wheels  who se axe s a re  mutua l ly  p e r p e n d i c u l a r  and 
pa ra l l e l  to the ma jo r  axes of the t enso r  P. Then it is easy  to 

show that  for  the so l idwi th  the fluid (at R << i t-o be 
equivalent  to the solid with the f lywheels ,  it is 

s u f f i c i e n t  (for like ex te rna l  fo rces  and moments ,  as 
well  as for  the same  m a s s e s  and ine r t i a  t e n s o r s  in 
both sys tems)  that condi t ions  be fulf i l led analogous 
to (2.5),  namely ,  pv - lP j j  = I2 j / k j  for  j = 1, 2, 3. Here,  
Pjj a re  the p r inc ipa l  va lues  of the t enso r  P; Ij is the 
momen t  of i ne r t i a  of the j - t h  flywheel,  with r e spe c t  to 
i ts  axis kj is the damping fac tor  of the j - t h  flywheel, 
i. e . ,  the p ropor t iona l i ty  factor  between the moment  
of the fo rce s  of i n t e rac t ion  of the f lywheel with the 

solid and i ts  angu la r  veloci ty  with the r e spec t  to the 
solid. 

In [3] ( t w a s  shown that a R  <<1, Eqs.  (1.1),  (1.2),  
and (2.3) can be s impl i f ied ,  In the s ame  paper ,  c e r -  
t a in  mot ions  of a solid with a cavity fi l led with a v i s -  
cous fluid were  studied in the case  of R << 1. 

These  cons ide ra t ions  a re  ful ly appl icable  to a solid 
with a damper  at R 1 << 1. F r o m  the r e s u l t s  of [3], 
~in p a r t i c u l a r ,  it fol lows that ro ta t ion  about the axis  of 
the m a x i m u m  momen t  of i n e r t i a  of the en t i r e  s y s t e m  
is the only s table  s teady ro ta t ion  of a f ree  solid with 
a damper  at R 1 <<. 1. 

3, Let  us examine  the mot ion  of a f ree  solid with 
a damper ,  without l imi t ing  ou r se lves  to the condi t ion 
R1 << 1. Pos tu la t ing  M = 0 in Eqs. (1.5), and sub-  
t r ac t ing  the th i rd  equation f r o m  the f i r s t ,  we obtain 

Jo-r + o • ( Jo 'o )  = k ( 0 1 - -  o ) ,  

Ira:' + Iv) • o:  = k (o - -  o:) ,  (S0 = J --/E).  (3.1) 

Here ,  J0 is the i ne r t i a  t enso r  of the s y s t e m  with 
r e spec t  to the point O, provided the en t i re  m a s s  of 
the damper  is concent ra ted  at its center .  Equat ions  
(3.1) fo rm a d o s e d  sys tem.  They can  desc r ibe  the 
mot ion  of a f ree  solid about a f ixed point  (if O is  a 
fixed point) or about the cen te r  of mas s ,  if O is  the 
cen t e r  of m a s s  of the sys tem,  and the OylY2Y3- 
coordinate  sy s t em moves  t r ans l a t iona l ly .  

Let us couple the Oxlx2x3-coordinate s y s t e m  to the 
m a j o r  axes of the i ne r t i a  t e n s o r  J of the sys t em with 
r e spec t  to the point  O. These  axes obviously  wil l  a lso 
be the ma jo r  axes fo the t enso r  fro. Let p, q, and r 
denote the p ro jec t ions  of the vector  o~ onto the xtx 2 

and x 3 axes r e spec t ive ly ,  le t  Pl, ql, and r:L denote the 
p ro jec t ions  of the vector  wl onto the same axes,  let  
A, B, and C denote the p r inc ipa l  moments  of i ne r t i a  
of the en t i re  s y s t e m  with r e spec t  to these  axes,  and 
let  A0, B0, and C o denote the p r inc ipa l  values of the 
t enso r  J0 in  the s ame  axes (values  equal to A - I, B - 
- I ,  and C - I, respec t ive ly) .  In the s ca l a r  notation, 
Eqs.  (3.1) wil l  take the f o r m  

A o p '  -}- (C o - -  Bo) qr = k (Pl - -  P),  

I (P'I  + qrl - -  rqO = k (p - -  Pl)' 

Boq'  + (A o -  Co) rp = k (q~ - -  q), 

I (q'~ + rp~ - -  p q )  = k (q - -  q~), 

Cor' + (B o - -  Ao) p q  = k (r~ - -  r), 

I (r'~ + pq~ - -  qp~) = k (r - -  r~). (3.2) 

Let us de t e r mi ne  the poss ib le  steady mot ions  of 
the solid. If w is  a cons tan t  w' = 0), f rom the f i r s t  
equat ion in (3.1) it  follows that w 1 is  a lso a constant ,  
and w' 1 = 0. Then, by s ca l a r  mul t ip l i ca t ion  of both 
s ides  of the second equat ion in (3.1) by w 1 - w, we 
obtain w 1 - w. F r o m  Eqs. (3.2) it can be seen that 
such mot ion  is  poss ib le  only for  the case  in which 
ro ta t ion  occurs  about one of the s y s t e m ' s  m a j o r  axes 
of ine r t i a .  Thus, the only poss ib le  steady mot ions  
of both the s y s t e m  and the solid with a v i scous  f luid 
a re  un i fo rm ro ta t ions  of the sys t em as a solid enti ty 
about one of the ma j o r  axes of iner i ta .  

We shal l  examine  the s tabi l i ty  of these  mot ions .  
Let the upe r tu rbed  mot ion  ( ro ta t ion  of the sys t em 

about the x l - a x i s  at the cons tan t  angu la r  veloci ty  a~0) 
be desc r ibed  by the equal i t ies  

P = Pl = (%, q ~ ql = r = r~ = 0 

(~o 4= 0), (3.3) 

We s e t p = w  0 + x a n d p l  =c~ + y in the pe r tu rbed  
motion, and l inea r ize ,  Eq. (3.2) about the solut ion of 
(3.3) 

A o x '  = k (y - -  x),  I y '  = k (x  - -  y), 

Boq'  + (A o - -  Co) O~or = k (ql - -  q), 

Co r' + ( B  o - -  Ao) o)oq = k (r 1 - -  r), 

I q ' t  + Io~ o(r  - rl) = k(q - -  qO, 

[ r ' l  @ Io) o (ql --  q) = k (r 1 --  r). (3.4) 

The f i r s t  two equat ion in (3.4) a re  independent  of 
the r e m a i n i n g  four equat ions ,  so that the c h a r a c t e r i s t i c  
equation of sy s t em (3.4) b r e a k s  down into two equa-  
t ions.  After  expans ion  of the de t e r mi na n t s ,  the 
c h a r a c t e r i s t i c  equat ions  reduce  to the fo rm 

AoD~ 2 + k (A o + I))~ = O, 

%3: + alU + a2~ 2 + as~ + a~ = 0, 

ao = BoCo I2, a I ~ I k  (2BoC o + B o [  + Col ) 

a~ = I2(oo 2 [(Ao - -  Bo) (Ao - -  Co) -1- 

+ BoCo] + k 2 (Bo + I) (Co + I), 

a3 = Ia)o2k [2 (_24o - - B o )  (-4o - - C o )  + 
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+ I ( A 0 - - B o )  + I ( A  o - C 0 ) l ,  

a4 = COo 2 (12(0o ~ + k ~) (A0 - -  B0) (.4o - -  Co) (3 .5)  

The mean ing  of the zero root  of the f i r s t  equation 
4in (3, 5) is  that  an in i t ia l  d i s tu rbance  of the kinet ic  
moment  of the en t i re  sys t em is r e t a ined  constant .  Be-  
cause  of the p r e s e n c e  of the zero  root ,  ana lys i s  of the 
l i n e r a r i z e d  sys t em (3.4) y ie lds  n e c e s s a r y  but not suf-  
f ic ient  condi t ions  for s tabi l i ty  of mot ion  (3.3). F o r  the 
mot ion  to be s table ,  the r e a l  pa r t s  of all  the roo ts  7~ 
of Eqs. (3.5) mus t  be nonposi t ive:  Re ~ _< 0. F o r  the 
roo ts  of the f i r s t  equat ion in (3.5) this  condi t ion is  
fulf i l led when k _ 0. Fo r  it a lso to hold for the second 
equation,  the L i~na rd -Ch ipa rd  condit ions [4] mus t  be  
fulf i l led:  Here equal i ty  s igns  a re  p e r m i s s i b l e ,  s ince  
we r e q u i r e  the inequal i ty  Re 7~ _< 0 and not Re 2, > 0, 
as is usua l ly  the case .  

Inasmuch as a 0 > 0, the L i~na rd -Ch ipa rd  condit ions 
for the second equat ion in (3.5) wi l l  have the fo rm [4] 

al >/  O , a~ ~ O, a4 > O , 

ala2a3 >/ aoa3 ~ + a12a4 �9 (3 .6)  

With use  of (3.5),  the las t  inequal i ty  in (3.6) can be 
reduced af ter  c u m b e r s o m e  but e l e m e n t a r y  a lgebra ic  
t r a n s f o r m a t i o n s  to the fo rm 

212o)o ~ (A o - -  B o - -  Co) ~ [Bo (Ao - -  Co) + 

Co(Ao - -  Bo)] + 

+ k a (2BoCo + Bo I -}- Col) [(Ao --  Bo) (Bo + I) + 

(Ao --  Co) (Co + I) ] >~0. (3.7) 

F r o m  condit ion a 4 > O, it follows that one mus t  have 

' e i t h e r A 0 - < B 0 - < a n d A 0 - < C 0 o r A 0 > = - _ D 0  andA0 >--C0. 
However,  we read i ly  see that in the f i r s t  case  condit ion 
(3.7) no longer  holds ,  w h i l e  in the second case  none 
of the condi t ions  (3.6) and (3.7) a re  fulf i l led for  k -> 0. 
The inequal i t i t i es  k >- 0, A 0 -> ]30, and A 0, -> C o a re  
p r ec i s e ly  the n e c e s s a r y  s tabi l i ty  condi t ions  for 

mot ion  (3.3).  
,Concerning the suff ic ient  condi t ions,  it can be 

s a i d  that sy s t em (3.2) has  the f i r s t  in tegra l  

K ~ = (Joo) + Io~) ~ = (Aop + Ip l )  ~ + (Boq + Iq~5 ~ + 

+ (Cor + I r l )  2 = const, (3.8) 

which e x p r e s s e s  conse rva t ion  of the kinet ic  momen t  of 
the en t i re  sys tem.  We can read i ly  see  that  by v i r tue  of 
Eqs .  (3.2) the kinet ic  energy  E ,  defined by the equali ty 

2E = Aop 2 -4- Boq ~ -[- Co r2 -]- I (pl  ~ + ql 2 + r12). (3.9) 

does not i n c r e a s e  dur ing  m o t i o n - i ,  e . ,  E' ~ 0 when 
k -> 0. Using t h e  idea of Che taev ' s  method,  we con-  
s t ruc t  the Lyapunov funct ion 

V = 2 ( A  0 + I )  E - K  ~ q- [g  ~ - ( A  o +  I) 2coo212. (3.10) 

It is not diff icult  to see  that  the funct ion V vanishes  
for  unper tu rbed  mot ion  (3.3).  Fo r  pe r tu rbed  motion,  
as above, we subs t i tu te  p =  co 0 + x a n d p ~ =  co 0+y in-  
to Eqs.  (3.8) and (3.9) ,  and then wr i t e  V in (3.10) as 
a funct ion  of the v a r i a b l e s  x, y, q, qa, r ,  and r~. With 

this ,  the l i nea r  t e r m s  cancel  each other out, and 
af ter  col lect ing like t e r m s ,  we obtain 

V = [AoI ( z  - -  y)~ + 4(oo 2 (Ao + I)  ~ (Aox + Iy)2] + 

A- [Bo (Ao + I - -  B)  qa _ 2Bolqq  1 + Aolql~] + 

+ [Co (-40 + I - -  Co) r ~ - -  2CoIrrx + AoIrx 2] ~- ... (3.11) 

The points  denote t e r m s  of the th i rd  and higher  
o r d e r s  of s m a l l n e s s .  The f i r s t  square  b racke t s  in 
(3.11) are  a pos i t ive  defini te  (for oJ 0 ~ 0) quadra t ic  

fo rm f rom x and y. For  the o ther  two quadra t ic  fo rms  
in  {3.1,15 to be posi t ive  def ini te ,  i t  is enough to r e -  
qu i re  that 

Ao (Ao + I - -  Bo) > BoI ,  A o(.4 o + I - Co) > Co[ 

Removing  the pa r e n t he se s  and cance l ing  by the 
fac tor  A 0 + I, these  inequa l i t i e s  can be reduced  to the 
fo rm A0 > B0 and A 0 > C 0. F o r  these  condit ions the 
funct ion V wil l  be pos i t ive  defini te .  Because  (K25 ' = 0 ,  
while E '  -< 0, the der iva t ive  of funct ion (3. 105 is non-  
posi t ive  by vi r tue  of the equat ions of motion:  V' -< 0 
for  k -~ 0. According  to Lyapunov 's  theorem,  mot ion 
wil l  be  s table  for the above condit ions w0 ~ 0, k --> 0, 
A0 >Co. We note that the inequa l i t i e s  A0 > B0 and 
A 0 >Co are  equi lva len t  to the inequa l i t i es  A >- B and 
A >C for  the p r inc ipa l  m o m e n t s  of ine r t i a  of the en-  

t i r e  sys tem.  
Thus ,  for  the s teady ro ta t ion  of a f ree  solid with 

a damper  about x l - a x i s  (motion (3.35) to be s table  
at w 0 ~0 and k >-0, the condi t ions  A >- B, A -> C mus t  
be fu l f i l led ,  and it  is suff icient  for  the r igorous  in-  
,equali t ies A > B and A >C to occur., In other words,  
s tab le  s teady ro ta t ion  of a f r ee  solid with a damper  is 
poss ib l e  only about the axis  of the m a x i m u m  p r inc ipa l  
momen t  of ine r t i a .  We note that in the genera l  case 
the same  suff icient  s tab i l i ty  condit ion [2] (A > B, A > 

C) occur  for  the steady ro ta t ions  of a f ree  solid 
with a cavi ty  f i l led  with liquid, while for  a high 

v iscos i ty  fluid [3] the n e c e s s a r y  s tabi l i ty  condit ions 
(A -> B and A --- C) a re  r equ i r ed  in addit ion to the 
suff icient  condit ions.  
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